An Integrated LES Modeling System for Homeland Security Applications

U. S. Nair1, R. Ramachandran2, Y. Wu1, S. A. Christopher3, S. G. Graves2, R. M. Welch3, R. A. Pielke Sr. 4, M. Newchurch3, K. Knupp3, Daniel D. Belk5, Laurie K. Fraser5, N. L. Goddard6

1Earth System Science Center, University of Alabama in Huntsville
2Information Technology and Systems Center, University of Alabama in Huntsville
3Department of Atmospheric Science, University of Alabama in Huntsville
4Department of Atmospheric Science, Colorado State University
5Aviation and Missile Research Development and Engineering Center
6Alabama Department of Homeland Security
Introduction

- Upcoming NASA funded project
- Integrate existing collection of technologies into a integrated Large Eddy Simulation modeling system
- Modeling system will be used to develop emergency management procedures
- Extension of NASA Earth Science results to decision support tools in twelve applications of national priority including Homeland Security
Project teams

- Three teams
- Science team: provide expertise on Earth Science research results and models
- System engineering team: integrating the modeling system, quantify performance and the utility of the modeling system
- Customer team: Users of the decision support systems: ALDHS and ARMDEC
Project Architecture

Earth Science Models
- MM5
- WRF

Earth Observatories
- MODIS
- ASTER
- Others

Integrated LES Modeling System
RAMS-LES

Predictions

Decision Support Tools
- FORT
- IFC
- Others

Homeland Security

Value & benefits to citizens & society

Improved Emergency Management Response

Decision Support Products
- Training Simulations
- Contamination Maps
- Others

INPUTS
- NASA and UAH Research Partners

OUTPUTS

OUTCOMES
- ALDHS and AMRDEC

IMPACTS
NASA Earth Science Models

• The integrated LES modeling system will use NASA operated MM5/WRF model outputs
• MM5/WRF is run operationally by the Short-term Prediction and Transition (SPORT) Center at 12km grid spacing
• Utilize the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) derived sea surface temperature fields
NASA Earth Science Results

- Land and Vegetation products derived from MODIS: 1 km resolution, 16 day composites
NASA Earth Science Results

- Advanced Spaceborne Thermal Emission and Reflection Radiometer
 - 30m DEM

Source: Earth Remote Sensing Data Analysis Center (ERSDAC)
NASA Earth Science Results

- 30m Albedo
- 30m NDVI
- 90m Moisture availability
- 30m Land use categories
NASA Earth Science Results

- Moisture availability
Modeling System

- Regional Atmospheric Modeling System (RAMS)
- Nonhydrostatic finite difference model
- Used for simulating atmospheric flow from cloud scale to mesoscale
- Sophisticated LEAF-2 soil vegetation model, capable of utilizing satellite derived land surface and vegetation products
Modeling System

• Recently modified RAMS to include sophisticated radiative transfer scheme that account for aerosol interactions
• Added aerosol transport module capable of assimilating satellite derived dust and aerosol products
• Incorporated Town Energy Balance (TEB) urban parameterization into RAMS, being validated by comparing against the Metropolitan Tracer Experiment (METREX) data.
Utility of NASA Earth Science results in LES models

- Large-Eddy Simulation: Utilize fine spatial resolution (typically ~100m or less) to explicitly resolve energy-containing large eddies and use subgrid-scale (SGS) closure schemes to parameterize SGS eddies.
- Recent research show that realistic representation of land surface heterogeneity is important.
- NASA satellite derived land surface and vegetation products are the most reliable datasets for this purpose.
Modeling System

• Central American smoke plume ~100 km grid spacing
Modeling System

- Saharan dust simulation ~40km grid spacing
Modeling System

- Power plant plume ~ 100 m grid spacing
Modeling System

- Flow around structures ~ 10 m grid spacing
Decision support systems

- Information Fusion Cell (IFC), Alabama Department of Homeland Security
- Force Protection Operational Requirements Testbed (FORT) facility, The Aviation and Missile Research, Development, and Engineering Center
- FORT simulation environment is a collection of models and simulations which are linked via an IEEE standard protocol
- Linked to the Redstone Arsenal emergency system, assists in training and evaluating emergency management procedures
Use of the integrated LES modeling system

• Conduct high resolution numerical simulations of toxic agent releases in an urban environment (e.g. RSA, Mobile, Anniston)
• Nature of scenarios will be specified by customer teams
• Provide contamination maps to IFC and FORT
Use of the integrated LES modeling system

• System engineering team will work with customer teams to quantify benefits

• The EMA responses may be analyzed to determine metrics that catalog differences in resource allocation, response time, routing, etc
Integrated modeling system requirements

- The prototype shall accept communication of a threat event based on a common protocol defined by the system engineering and customer teams.
- Communicate with the decision support systems using protocols specified by the customer teams (IEEE 1278 for AMRDEC, to be determined for ALDHS).
- The prototype shall present a model configuration based on the threat report and also allow user to modify the suggested configurations.
Integrated modeling system requirements

• The prototype shall maintain a database of remotely sensed, in situ observations and model outputs needed to drive the RAMS-LES
• The prototype shall provide the best possible options of each dataset required to drive the model
• The prototype shall be operable by personnel with very little knowledge of atmospheric numerical modeling but shall allow manual intervention by knowledgeable personnel
Summary

• Research effort to combine a set of existing tools into a integrated LES modeling system for simulating dispersion of toxic agents
• Realistic representation of surface heterogeneity through the use NASA satellite derived land surface and vegetation products
• System will be used to generate realistic scenarios of toxic agent release
• Utility of the scenarios to develop emergency management procedure will be evaluated by the FORT and IFC decision support systems
• Transition to a operational framework in the future