Aerosol Direct Radiative Forcing over oceans using merged MODIS/CERES analysis

Jianglong Zhang
Naval Research Laboratory, Monterey, CA

Sundar A. Christopher
University of Alabama in Huntsville, Huntsville, AL

Lorraine A. Remer and Yoram J. Kaufman
NASA, GSFC, Greenbelt, MD

American Geophysical Union, Fall 2004
Eos Trans. Suppl., 85, (47), Fall Meeting, 2004
Methods

Goal: Estimates shortwave aerosol direct radiative forcing (SWARF) over oceans using combined satellite observations

Steps:

• Build new empirical aerosol ADM

• SWARF over oceans

• Diurnally averaged SWARF

• Correct for sample bias due to large CERES footprint

• Estimate Anthropogenic Aerosol Forcing
Different approaches in estimating SWARF

(1) Radiative transfer equations (e.g. Penner et al., 1992)

(2) General Circulation Models (e.g. Hansen et al)

(3) MODEL + satellite derived AOT (e.g. Chou et al., 2002)

(4) Combined Satellite observations (e.g. Christopher and Zhang, 2002; Zhang et al., 2004)

Which way to go?
Approaches from combining satellite observations

• CERES provides Top-of-Atmosphere (TOA) Shortwave (SW) and longwave (LW) observations (~20 km at nadir).

Problems:
• (1) Do not contain aerosol properties.
• (2) Cloud screening is not accurate using CERES alone.
Approaches from combining satellite observations

• MODIS data has finer spatial resolutions that can be used in detecting aerosol and cloud properties within a CERES footprint.

• Ten months of CERES SSF data were used in this study.
Angular Distribution Models (ADMs)

ADMs are needed to convert CERES measured radiances to fluxes.

ERBE ADMs: *Over cloud free oceans*
- Not include aerosol aerosol properties
- Not include wind speed

TRMM ADMs: *Over cloud free oceans*
- Include ECMWF modeled wind speed
- Use theoretical calculation to account for the effect of aerosol optical depth on TOA radiation fields

New Terra ADM: *Over cloud free oceans*
- Use SSM/I wind speed
- Use the fraction of small mode to total AOT (η) to distinguish aerosol types
- More coverage compared to TRMM
- MODIS: more accurate for aerosol research

Zhang, Christopher, Remer, and Kaufman, JGR, Part 1, in press
Comparison with existing ADMs

The instantaneous aerosol forcing efficiency (for $\tau_{0.55} < 0.4$) are 73.0, 63.1, and 80.5 Wm$^{-2}$ per $\tau_{0.55}$ for Terra, TRMM and ERBE ADMs respectively.

Zhang, Christopher, Remer and Kaufman, JGR, Part 1, in press
MODIS $\tau_{0.55}$ and CERES derived SWARF for NDJF

- SWARF is defined as the difference in TOA energy without (F_{clr}) and with (F_{aero}) the presence of aerosols.

- Only 99.9% clear CERES pixels were used.

- F_{clr} derived using empirical regression relationship as functions of wind speed and θ_o.

Zhang, Christopher, Remer and Kaufman, JGR, Part II, in press
MODIS $\tau_{0.55}$ vs. CERES derived SWARF for three seasons

The spatial and seasonal distributions of $\tau_{0.55}$ and the independently derived SWARF show a high degree of correlation.

The relationship can be estimated using the equation:

$\text{SWARF} = 0.05 - 74.6 \tau_{0.55} + 18.2 \tau_{0.55}^2 \text{ Wm}^{-2}$ (if $\tau_{0.55} < 0.8$).
SWARF over CERES cloud free oceans estimated using three different ADMs

<table>
<thead>
<tr>
<th></th>
<th>NDJF (Wm(^{-2}))</th>
<th>SPRING (Wm(^{-2}))</th>
<th>SUMMER (Wm(^{-2}))</th>
<th>10-month (Wm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERBE ADMs</td>
<td>-6.8</td>
<td>-7.5</td>
<td>-6.7</td>
<td>-7.2</td>
</tr>
<tr>
<td>TRMM ADMs</td>
<td>-5.1</td>
<td>-6.0</td>
<td>-5.2</td>
<td>-5.6</td>
</tr>
<tr>
<td>Terra ADMs</td>
<td>-6.5</td>
<td>-7.2</td>
<td>-6.3</td>
<td>-6.4±2.6</td>
</tr>
</tbody>
</table>

• The instantaneous SWARF is **-6.4±2.6 Wm\(^{-2}\)**
Estimating diurnally averaged SWARF over oceans

To convert from instantaneous to diurnally averaged SWARF, need to (1) correct for sample biases, and (2) account variations in solar zenith angle.

- The difference in MODIS and CERES cloud free sky AOT is used to correct for the sample biases due to large footprint of CERES.
- To convert from instantaneous SWARF derived at Terra overpass to 24 hour averaged SWARF, a scaling factor of 2 is used.

<table>
<thead>
<tr>
<th>Clear sky over oceans</th>
<th>W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haywood et al., 1999</td>
<td>-6.7</td>
</tr>
<tr>
<td>Boucher et al., 2000</td>
<td>-5.5</td>
</tr>
<tr>
<td>Loeb and Kato, 2002</td>
<td>-4.6</td>
</tr>
<tr>
<td>Bellouin et al., 2003</td>
<td>-5.2</td>
</tr>
<tr>
<td>Chou et al., 2002</td>
<td>-5.4</td>
</tr>
<tr>
<td>Yu et al., 2004</td>
<td>-4.6</td>
</tr>
<tr>
<td>This study</td>
<td>-5.3±1.7</td>
</tr>
</tbody>
</table>

- The uncertainties for instantaneous and diurnally averaged SWARF are 2.6 and 1.7 Wm-2 respectively.

- The diurnally averaged SWARF is **-5.3** over cloud free oceans.
Estimating anthropogenic forcing using MODIS fine mode fraction and CERES measurements is now possible because ADM as function of η available and anthropogenic fraction can be separated using MODIS measurements (Kaufman et al., 2004, in press)

(See poster A23C-0811 this afternoon for detail)
Conclusion: Summarize and new things

• The purpose of this study is to cut down assumptions and uncertainties in SWARF studies using an empirical approach.

• New aerosol ADMs are constructed over cloud free oceans as functions of AOT MODIS and η and ocean wind speed.

• Average over 10 month, the diurnally averaged SWARF over cloud free skies are -5.3 ± 1.7 Wm$^{-2}$ respectively, this value is consistent with values reported from other studies using combination of model and satellite observations.

• Anthropogenic aerosol climate forcing can be studied using direct satellite observations since ADM’s are now available as function of η which is a proxy for anthropogenic aerosols.